skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ayres, Neil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Emulsion-templated polymerizations are an attractive route to prepare porous materials that possess broad tunability by controlling the features of the emulsion template. Emulsion templated polymer materials possessing shape memory behavior have also been reported, usually using (meth)acrylate monomers. However, achieving shape memory properties in emulsion templated materials with polymers that do not possess accessible thermal transitions, including polydimethylsiloxane (PDMS), remains challenging. Here, porous PDMS materials have been prepared with stearic acid within the continuous phase of the emulsion template. The inclusion of stearic acid imparts the material with a transition temperature of ∼70 °C, and the porous materials in this work obtained fixity >90% and recovery >95% over multiple shape memory cycles. These results demonstrate how low glass-transition temperature emulsion-templated polymer materials can easily be given shape memory properties. This work should be a starting point for studies of elastomeric emulsion-templated polymer materials in applications, including in soft robotics. 
    more » « less
  2. Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition−fragmentation chain transfer polymerizations to control the emulsion template and act as an additional crosslinker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses. 
    more » « less
  3. Polymer-based acoustic metamaterials possess properties including acoustic wave manipulation, cloaking, and sound dampening. Here, PDMS-based elastomers were prepared using thiol–ene “click reactions” with emulsion templating. Acoustic analysis showed these materials achieved sound speed values of ∼ 40 m s −1 , close to the predicted minimum of ∼25 m s −1 attainable. 
    more » « less
  4. null (Ed.)
  5. We report on the use of visible light as the driving force for the intramolecular dimerization of pendant anthracene groups on a methacrylic polymer to induce the formation of single-chain nanoparticles (SCNPs). Using a 532 nm green laser light source and platinum octaethylporphyrin as a sensitizer, we first demonstrated the use of TTA-UC to dimerize monomeric anthracene, and subsequently applied this concept to dilute poly((methyl methacrylate)- stat -(anthracenyl methacrylate)) samples. A combination of triple-detection size-exclusion chromatography, atomic force microscopy, and UV-visible spectroscopy confirmed the formation of the SCNPs. This report pioneers the use of TTA-UC to drive photochemical reactions in polymeric systems, and showcases the potential for TTA-UC in the development of nanoobjects. 
    more » « less